"Working Your Quads" (Joy, Ch 10)

Quadratic Formula

$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 "a porcupine of symbols"

Meaning? Story? ... Inner Beauty?

Algebra: "Solve for α ."

- To solve a problem, give a name to _______ call it x for example then write down what we ______ 3 work from there.
- · Like solving a mystery: Student X did not write his/her name on their paper... used colored pens... writes in cursive...

· Example : Inheritance

- 10 dirhams (unit of currency)
- two sons, one daughter
- each should receive share, but sons' shares should each be twice as much as daughter's (Islamic law)
- Call daughter's share x.

Then each son's share is ____.

In total : 10 = __ +__+

Simpler : 10 = ___

Therefore x =___.

- · Daughter receives ___dirhams. }
- · Each son receives __ dirhams.
- Solving the problem came down to "_____" the equation 10 = 5x, i.e. finding a number for x that makes a ____ equation: $10 = 5 \cdot 2$.

· In general, when dealing with an equation, we may:

- ___ the ___ number to ___ sides
- ____ the ___ number from ___ sides
- ____ sides by the ___ number
- ____ sides by the ___ number (not ___)

· Quadratic Equations:

$$\chi^{2} + 10 \chi = 39$$
 ... $3\chi^{2} - \chi + 2 = 7$... $a\chi^{2} + b\chi + c = 0$

A Geometric Approach: Complete the Square

Solve: $\chi^2 + 10\chi = 39$

 χ χ^2

5 5x 5x

5

* Notice x is same length in each.

Rearrange pieces & set equal to 39:

"Complete" the Square:

$$(\chi + 5)^{2} = 64$$
$$(\chi + 5)^{2} = ()^{2}$$
$$\chi =$$

Check: For
$$x=3$$
, do we have $x^2 + 10x = 39$?

Well, ______, so _____.

From a modern viewpoint, we are missing one of the roots... . Keep in mind that $()^2 = 64$ as well...

$$(x+5)^{2} = 64$$
 $x+5=8$
 $x=3$
 $\sqrt{}$

Using other notation: $\chi + 5 = \pm \sqrt{64}$ $\chi = -5 \pm \sqrt{64}$ $\chi = -5 \pm 8$ Activity #8

- O Solve $x^2 + 6x = 16$ by completing the square. O Solve $x^2 + 14x = 51$ by completing the square.
- 3 Further: Suppose B and C are positive numbers. Solve $x^2 + 2Bx = C$ by completing the square.
- @ Further: Use the quadratic formula to solve the quadratic equations in 0 & 3.

See Activity #8 Hand Out for details.